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Abstract. It is shown that the solvable structure of the stability group of a massless field yields, 
in a simple and shon way, useful information about the physical polarization states. and the 
structure of the Hilben space for such a field. It is also shown that such fields are necessarily 
gauge fields; the exact form of the gauge transformation follows from the structure of the 
equivalence classes implied by the group properties. Some examples for spinor and tenmr fields 
in general dimensions are worked out and the StNCNre of the Hilbert space for gravitational 
radiation is discussed in some detail. 

1. Introduction 

The relations between the physical properties of the four-dimensional massless fields and 
the representation of the Poincark group have been treated by many authors [l-31. It 
appears that in most cases in which this subject is treated, it is assumed that the field has 
a definite s a t u r e ,  e.g. that the massless vector field is a gauge field. Weinberg [4] has, 
however, treated this problem without assuming that the massless fields are gauge fields, 
and without specific assumptions on the form of the equations of motion. He starts by 
defining tensor fields transforming according to the (0, j )  or ( j ,  0) representations of the 
homogeneous Lorentz group (corresponding, for j = 1 and 2, to the Maxwell field strengths 
F’” and the Riemann-Christofel tensor R’””). He shows that any covariant-free field can 
be constructed as a linear combination of these fields and their derivatives. They cannot, 
however, be used to construct the interaction Hamiltonian, since the coefficients of the 
annihilation and creation operators for particles of momentum p and spin j vanish as p j  

for p -+ 0, inconsistent with the existence of long-range force laws. One must therefore use 
potentials. It is then shown explicitly that the vector potentials do not transform as tensors 
under Lorentz transformation. A Lorentz transformation induces a tensor transformation 
and additional terms which are derivatives of a scalar function of x and A; these additional 
terms are understood as a gauge transformation, since they leave the field strength invariant. 
The only interactions allowed are, therefore, those which satisfy gauge invariance, i.e. they 
must be coupled to conserved currents. One finds, moreover, that a non-covariant term 
must be added to the interaction Hamiltonian (e.g. the Coulomb interaction for j = 1)  to 
obtain an invariant S-matrix [5]. 

In this paper, we obtain Weinberg’s results from a different point of view. This procedure 
provides some additional insight into the basic underlying mathematical structure. It follows 
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directly from its properties as a (massless) representation of the Poincard group that the 
massless potential field in any dimension must be a field with gauge degrees of freedom. 
Moreover, we show that the existence and the admissable form of the gauge transformations 
follows from the requirement that the field, as a representation of a group which has a 
solvable factor, must have an equivalence class that corresponds exactly to the property 
of gauge invariance). This new theorem enables us to analyse the gauge properties of a 
massless field in any dimension, yielding the explicit form of the gauge transformation and 
also (without use of the wave equation) the structure of the Hilbert space for the second 
quantized field theory. As examples for the use of our theorem, we investigate the problem 
of massless tensor and spinor fields for several cases, and discuss, in particular, the gauge 
freedom of the massless vector field in any dimension and the possibility of a gravitational, 
gauge-invariant conformal field for d = 6. For a spinor field, we find that there are two 
possibilities, i.e. spinor fields may be gauge fields, or may have a restricted handedness 
and then violate parity. We furthermore prove that the harmonic coordinate condition 
for the linearized gravitational field theory, which appears in the standard literature as a 
consequence of the freedom to make a general coordinate transformation, in fact follows, 
as a condition for the existence of a massless spin-2 tensor field corresponding to weak 
gravitational radiation on a flat background spacetime. 
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2. Vector fields in general dimension 

Let A ( x )  be some field in an arbitrary flat manifold, a generalized spacetime, with metric g 
of signature ( p ,  q) (where we consider q to be the 'time-like' indices), and suppose that it  
has some definite transformation properties, i.e. as a spinor or tensor field. Let us consider 
the Fourier transform A ( k ) .  We define A ( k )  as a massless field if the field has support 
for k such that k'k, = 0. Let Aus be an element of the homogeneous matrix-valued 
isometry group A of the manifold, i.e. A = O ( p , q )  with the generators L,, = -Lu ,  
( j ~ ,  U = 0, . . . , d - 1) satisfying the commutation relations 

KPyI Lpnl = i(vVpL,# -I,~L, + I ~ ~ L ~ ~  - vvoLpp). 

We denote by an element of the subgroup of i ( k )  that stabilizes kw, i.e. 

where i ( k )  is the little group (or stability group) of k .  We discuss the structure of this little 
group below. Under the action of the little group 

A'(k') = A'(i\k) = A'(k) .  (2) 

If A is a scalar field, then it is invariant under this subgroup of transformations, but if A 
has indices with spinor or tensor transformation properties then A' # A .  We shall define 
the components which span an irreducible representation of the (universal covering group 
of the) little group i ( k )  as the polarizations of the field. They are the physical spacetime 
degrees of freedom of the field. In the case of massless fields, one can show that the 

t This result dws not, of course, select a panicular choice of gauge, such as Lorentz. or Coulomb. but proves that 
a massless tensor or spinor field must have what we recomize as gauge degrees of freedom. ' 
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little group is a semidirect product of a maximally connected semisimple subgroup and a 
‘translation’ part which is a maximally simply connected solvable normal subgroup. There 
is a general theorem that in such a case the ‘translation’ subgroup must be represented 
trivially in any finitedimensional irreducible representation of the group [6 ] .  In this paper 
we use this property to find useful information about the field in a simple and general way. 

In the four-dimensional Minkowski manifold, the little group of a massless field is 
isomorphic to E(2),  the isometry group of the Euclidian plane (for example, [6]).  Let 
us take, without loss of generality, k to be in the i direction. Then this group has three 
generators of the form [4] 

0 0 0 0  0 1 0  0 0 0 1  0 

0 - 1 0 0  
0 0 0 0  0 1 0  0 0 0 1  0 

A = ] (  . o o  1 0  ) . i = i ( .  1 0 0 - 1  .) . . = i l l  0 0 0  -1) 0 

(3) 

and the algebra is 

[J3 .  L11 = iL2 [J3 .  ,521 = -iLI [ L I ,  L21 = 0 .  (4) 

L I  and Lz generate the ‘translation’ subgroup. This group is solvable and admits only 
one-dimensional (or infinitedimensional) representations so that A” (finitedimensional) 
must be stable under the action of the translation part. Since the translation generators are 
nilpotent, the finite translations are represented as 

A‘ + qA + a A ”  + B A Y  
A’ + a A  
AY + B A  

A z + q A + f f A x + B A Y  

A‘@(k) = ( 

O I  
0 0 1  
B 0 0  -B 

The field A@ transforms under the translational part as 

where q = (a2 + p2)/2 and A At - A z .  If A@ is required to be literally stable under this 
transformation, one finds that A = AX = AY = 0. It then follows that the only excitations 
one can create are of the form 

([at - ~, I~YIo) .  
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Under the assumption of covariant commutation relations for the creation and annihilation 
operators, 
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[a’(k), a, t (k’)]  = 8pu6(k - k’) 

these states have zero norm. Such a field, i.e. with AX = AY = 0 and A’ = AT, could 
exist classically but not quantum mechanically. In order to obtain a non-trivial field which 
satisfies these conditions, we must admit an equivalence relation in (part of the) vector field, 
i.e. to assume that A j  is equivalent to A i  plus an additive term of a given type. If we 
attempt to find a solution with A # 0 we find that all the field components are defined only 
up to an equivalence relation, i.e. the fields are trivial. For a non-trivial solution, one must 
then take A = 0, and A’, AY # 0 (one cannot take just A’ or just AY as physical fields 
because J3 mixes them)?. We find that 

A‘@) - A‘@) + aA’(k) + BAy@) 
A L ( k )  - At@)  +ciAX(k)  + BAY(k). 

This freedom corresponds to the gauge transformation 

A’(k) + AO(k) + iknA(k) ( 1 1 )  

where we identify ikOA(k) and ikTA(k) as aA”(k)+BAY(k). The Fourier transform of (1  1) 
is 

A W  ---+ A Y X )  + a p m )  (12) 

which is the well known gauge freedom of the four-dimensional electromagnetic field. We 
conclude that the existence of non-irivial physical degrees of freedom for a massless vector 
field in 3 + 1 dimensionr implies that thefield must be a gaugefield. Moreover, one identifies 
in this way the nature of the gauge group and the form in which these physical degrees of 
freedom are represented by the field. 

The structure of the quantum-mechanical Hilbert space is determined by the physical 
degrees of freedom (i.e. the polarization states); we discuss this structure in the following. 

The conditions A = 0 or A‘ = A‘ cannot be satisfied (quantum mechanically) as an 
operator identity 171; instead, one imposes the subsidiary condition by restricting the space 
of the states by some linear condition, such as the Gupta-Bleuler condition: 

for any physical state ]U). The space of the states, therefore, contains a physical, positive- 
definite norm subspace (Iuphys)] created by atx and atY (or by (l/&)(atx & .tu), which 
creates & I  helicity eigenstates), which we call the physical Hilbert space, and a ‘ghost’ 
sector that contain at least 1 ‘ghost’ created by aif + atz. The ghost sector is a zero- 
norm subspace orthogonal to the physical one. The physical Hilbert space can be defined 

t Classically. A = 0 means the lnnsvenality of the field, k,Ap = 0. This condition is necessnry for the existence 
of non-uivial field strengths: it does not correspond to a gauge condition. AS we shall see. it  is an expression of 
the Gupta-Bleuler condition for the consistent quantization of a gauge field and, although we have chosen the 2 
direction as the direction of k in the Fourier rerpresentation. the condition is completely covariant. 
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covariantly as the closure of the quotient space [IVphys)]/[IVghort} and the S matrix is unitary 
with respect to this physical subspace if it is norm-preserving in the whole Hilbert space 
and the subspace Iuphys) is invariant under its action [7]. 

In general dimension d with signature ( p ,  4). it is easy to see that the little group of the 
massless field with null k is E ( p  - 1, q - 1). the Euclidian isometry group of the (d  - 2)- 
dimensional space with signature ( p  - 1, q - 1). Let us take the zero-length vector in a 
form in which there is just one time-like and one space-like component, which we shall call 
longitudinal components. In the construction of the matrices of the stability subgroup, one 
sees that if (without loss of generality) k ,  = ( k ,  0, 0, . . . , k ) ,  in addition to the semisimple 
O ( p  - 1, q - 1) part, which is spanned by Li,j(i .  j = 1, . . . , d - l), there are elements that 
connect the non-zero components of the zero-length vector. These form a commuting set 
of d - 2 boostr, and rotation matrices which is spanned by Li = Li0 + Lid and play the role 
of the T(d - 2) ‘translations’ group, the maximally solvable subgroup of E ( p  - 1, q - 1). 

In a general representation of the massless vector k ,  we denote by Ait the ‘longitudinal’ 
component of the time-like part of the field (AIt parallel to k in the ‘time’ part of the space 
with no ‘space’ components ) and by Ais the longitudinal component of the spacelike part. 
These components must satisfy A = 0 where A A” - AIS. The action of the gauge 
(equivalence) transformation is again of the form 

A’(k) --+ A’(k) + ik@A(k) (14) 

where the Fourier transform is 

A’(x) + A p ( x )  + a’A(x) ( 15) 

and the Hilbert space has the same structure as in the O(3, 1) case. For the case q > 1 
the semisimple subgroup is non-compact and the finite-dimensional representations are non- 
unitary. This case has been treated in [SI. It is interesting to note that if the isometry group 
is O(1, l), there is no little group (excluding the conformal symmetry for the massless 
particles) for massless and massive particles so there are no intrinsic differences between 
them from the point of view that we have discussed above. In particular, there is no gauge 
symmetry (as for the Schwinger model [7]). 

3. The massless spinor field 

Consider now a massless spinor field in chiral representation in 3 + 1 dimensions. The 
transformation property of a Weyl spinor under the Lorentz group is given by 

where & is a unit 3-vector in the boost direction and A is the direction of the rotation 
axis. The parameters 8 and rp correspond, respectively, to the rotation and the boost. The 
generators of the translation part of E ( 2 )  (when the momentum k is directed along the 2 
axis) are L I  and L2 as defined above. The new spinors are, under the action of L I ,  
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and under Lz. 

As we see, in this case one can satisfy the triviality representation condition for the E(2)  
translation part without equivalence relations; such a solution can be achieved by requiring 
the upper components of the right-hand spinor, as well as the lower components of the 
left-hand spinor to vanish identically. We know that in the chiral representation, spatial 
inversion (the parity transformation) is represented by 

9 - Y O *  (22) 

where 9 is the 4-spinor (2) and y o  is, in this representation 191, 

/ o  0 - 1  o \  

Hence the parity transformation interchanges the upper components of the right-handed 
and left-handed spinors as well as the lower components. Such transformations mix 
physical components with identically zero components and therefore parity is violated. It is 
interesting to note that if we allow the freedom of spinor gauge then we can take the lower 
component of the left-handed spinor and the upper component of the right-handed spinor to 
be physical fields where the lower right and the upper left will be equivalent to themselves 
plus something. Parity is also violated for this type of field. 

4. Massless, gauge invariant tensor fields 

Let us now consider the case of a second-rank massless tensor field Tap@). We first ask if 
there is a massless tensor that is stable under the translation part of the little group without 
any equivalence relation, i.e. without gauge freedom. The strict stability condition is 

&,T&Z = T (24) 
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where kv is any matrix which belongs to the translation part of the little group, and k:, 
its transpose. One finds that the most general tensor in the O(3,l )  geometry (when k is 
in the i direction) that satisfies this restriction can be written as a sum of three tensors, an 
antisymmetric part, a traceless part and a ‘conformal’ part. The antisymmetric part, 

is exactly of the form of the electromagnetic field tensor for propagating waves, where a(k) 
and @ ( k )  are the linear polarization components of the electric and magnetic fields. The 
traceless symmetric part, 

is a candidate for the energy-momentum tensor for a massless field with momentum k ,  it 
is indeed of the form of the energy-momentum tensor for the electromagnetic field or for 
gravitational radiation. What we have called the ‘conformal’ part, has the form 

where 7”’’ is the flat metric diag(-, +, +. +), and @(k) satisfies the massless condition. 
Fields of the form (25) and (26) are, in fact, necessarily massless if they are to maintain 
their form under Lorentz transformation. They are not in a definite representation of O(3) 
but they are invariant in form under E @ ) .  On the other hand, a tensor of the form of 
can also represent a massive field; a field with this structure is by definition a tensor under 
the action of the Lorentz group. If one takes GpY(x) to be a matter field that satisfies, in 
the massless case, a”$G*’(x) = 0, or in the massive case V’awG‘”(x) = m 2 G ” ( x ) ,  it 
appears as (at least for free fields) essentially just one non-interacting massless (or massive) 
Klein-Gordon field. One can, however, consider the conformal field as a representation 
of the metric itself, i.e. as a general relativistic conformally flat metric. In the case of a 
conformally flat metric (e.g. of Robertson-Walker type [lo]) of the form (we take (oa for 
convenience, in place of the @ of (27)) 

g’Y = cpZ(X)77’Y (28) 

the scalar curvature in d dimensions is [111 

R = cp-’{-Z(d - l )aPaa ,  In&) - (d - 2)(d - 1)a” In(o(x)a, In&)} 
1 I 

= p-’(-Z(d - l)-aPa,cp(x) + (d - 1)(4 - d)-a@p(x)$cp(x)). (29) 
cp cp2 

We know from the Einstein equations that if the trace of the energy-momentum tensor 
vanishes, the scalar curvature R also vanishes. In such a case, when d = 6, both terms in 
(29) have the same coefficient, and it then follows that a*a,cp2(x) = 0, i.e. the metric must 
be a massless field. 
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5. Gravitational radiation and the harmonic-coordinates condition 

We now turn to the four-dimensional helicity-2 massless field*. It is generally known that 
the four-dimensional second-rank tensor field contains states with helicity *2, On the other 
hand, the tensor fields we obtained in the previous section are of helicity-zero type (the SP” 

and G’” ), and a helicity-1 field (the F’” ). We now wish to construct a second-rank tensor 
with physical *2 helicity polarization states. Then the Hilbert space must be of gauge type, 
i.e. it necessarily contains an equivalence relation. 

We consider a symmetric, traceless second-rank massless field in four dimensions. Such 
a tensor has in general 9 independent components of the form 

N Shnerb and L P Honvitz 

(where the traceless condition is assumed). The f 2  helicities are the fields 

et = t l l  - tn +Zit” e- = tl’ - tzZ -Zit”. 

With the definition, 

A,TAZ = 

one finds that the stability condition is 

This implies the relations 

23 - 02 t33 = 2tm - t W  t13 t - t  

and the traceless condition becomes 

2( tW - t03) - (t” + t=) = 0. 

(34) 

(35) 

In addition to these identities, one finds that the fields tW, to3, to’ and tM are non-physical 
fields and fall into an equivalence class defined by 

t W  - t W  + (a2 + p - Z ) ( P  - t03)  + 2at0’ + 2 p P  + aZtl1 + 2apP + 8%” 

to3 - to3 + (a2 + pZ)(tW - t03) + 2at0’ + zpt02 + aZtll + zapt’2 + p 2 P  
to1 - to1 + a(t“ - t O 3 )  + LYt’l + pi12 

to2 - P + p ( P  - P 3 )  + at12 + p t 2 2  . 

(36) 

We see that the gauge freedom corresponding to this equivalence class can be written as 

T’”(k) + T P Y ( k )  + k @ A ” ( k )  + k ” A ” ( k )  

t In general. any plane wave $ which is transformed by a rotation of any angle B about the direction of propagation 
into $‘ = eihB@ is said to have helicity h .  The propagalion is chosen in the L, i.e. 3 direction. 
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where A’(k) is defined by (36). One sees that tW - to3 is gauge invariant and can be a 
candidate for a physical field, but the assumption of covariant commutation relations 

(37) 
(where the a@”s are defined as the annihilation operators of the corresponding tensor field 
excitations) implies that tW - to3 is a zero-norm (ghost) field. It follows that the condition 
that all the trace expectation values vanish is 

(38) 
At this stage, with the help of (38) and a simple transformation of (30) to helicity-diagonal 
form one can see that there are only 2 physical components in the tensor field, i.e. e+ and 
e-. The conditions (34) (satisfied as a Gupta-Bleuler-type restriction on the Hilbert space) 
are exactly the conditions to eliminate negative-norm states in this theory, as can be seen 
from the commutation relations. The gauge freedom now becomes 

[a””(k), UJA(kO1 = @qB(L - rc’) 

(u;hysl~’~ + tZ21U,hYS) = 0. 

tW - rW + (az + p2)(tW - tm) + 2at0’ + 2 p o 2  + (a2 - B2)r” + 
to3 - to3 + (a2 + BZ)(tW - t03)  + 2at0’ + 2 B P  + (012 - B Z ) t ”  + 201Bt’Z 

to’ - to1 + a ( P  - P 3 )  + at11 + B t l Z  

to2 - to2 + B(tW - tO3) + ar’* - @ti1 . 

(39) 

The helicity-zero states of this theory are of three types. The state corresponding to the 
components t’l +tu  is a positive-norm physical field eliminated from the Hilbert space by 
the traceless condition. The state corresponding to tW+tm is a zero-norm gauge-equivalence 
class ghost. The field tW - to3 corresponds to a gauge-invariant ghost. The helicity-1 fields 
of this theory, to’ f ito2, are gaugeequivalence class zero-norm ghosts. All the gauge- 
equivalence class ghosts can be taken to zero by an appropriate Lorentz transformation 
where t l l  + tZ2 is eliminated in all Lorentz frames and tW - tM is a gauge-invariant ghost. 

We now consider the possibility that T’” corresponds to the metric tensor of general 
relativity, g p ” .  If the gravitational field is weak, the notions that we have used to define 
spin, helicity and masslessness through the Fourier transform and the tensor transformation 
properties under the Lorentz subgroup of coordinate transformations, are still valid. It is 
then a consequence of (34) and (38) that 

g”TL, = 0 (40) 

(where rhv denote the corresponding Christoffel symbols), i.e. that the coordinates are 
harmonic. This choice of coordinatization, usually the result of a choice within the 
framework of general coordinate transformations (analogous, in general relativity, to the 
choice of a gauge) [12], is imposed by the transformation properties of the tensor under the 
Lorentz subgroup and the assumption that the field is massless. 

6. Summary 

In this paper we have studied the polarization properties of a massless local field in any 
dimension of spacetime. In the Fourier representation, the field is a finite-dimensional 
irreducible representation of the corresponding O ( p ,  q )  (or its universal covering) which 
leaves a ‘light-like’ vector invariant. From this group-theoretical requirement, we are able to 
define the physical polarizations, and obtain the structure of the Hilbert space representing 
the states of such a field. We may further deduce that these fields must have equivalence 
classes corresponding to gauge symmetry. 
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